Table of Contents
List of the most important spring steels with material description, operating temperature, modulus of elasticity (E-modulus) and sliding modulus (G-modulus) as well as price index.
Compared to other steels, spring steel has a higher strength and can be deformed up to a certain tension (elasticity limit “Rp”). After relieving the load, the spring steel then returns to its starting position without being permanently deformed. Spring steel EN 10270-3-1.4310, for example, has a tensile strength of 1250 to 2200 N / mm², compared to 360 N / mm² for structural steel S235JR. The decisive difference here is the yield strength ratio, ie the ratio of elastic limit to tensile strenght of the material that is normally used for spring steels> 85% lies. The elasticity as the main characteristic of a spring steel is achieved during the manufacturing process through a special alloy by adding silicon (Si), manganese (Mn), chromium (Cr), vanadium (V), molybdenum (Mo) and nickel (Ni).
What are the requirements for a spring material:
Spring steel must have a large elastic and sufficient plastic deformation capacity (winding of springs). It must have a high elastic limit, elongation at break and constriction at break, as well as a favorable creep and fatigue strength. In addition, the spring steel should have a low end carbonization and crack-free surface. A final heat treatment can increase the tensile strength of the spring steel.
Gutekunst Federn has most of these spring steels in stock with a round cross-section of 0.1 to 12.0 mm wire thickness. If you have a need for compression springs, tension springs, torsion springs and bent wire parts, click here for individual spring request .
The spring range in Gutekunst spring catalog is made of spring steel wire (EN 10270-1DH / SH) and stainless spring steel wire (EN 10270-3-1.4310). * Values at room temperature (20 ° C)
Bezeichnung | Materialbeschreibung | Max. Einsatztemp. | EN | G-Modul* | E-Modul* | Preis-index | |
---|---|---|---|---|---|---|---|
Federstähle | |||||||
EN 10270-1 Typ DH | Federstahldraht Alle geläufigen Federn, hohe statische und mittlere dynamische Beanspruchung | 80°C | 10270-1 | 81500 | 206000 | 100 | |
EN 10270-1 Typ SH | Federstahldraht Alle geläufigen Federn, hohe statische und mittlere dynamische Beanspruchung | 80°C | 10270-1 | 81500 | 206000 | 100 | |
Korrosionsbeständige Federstähle | |||||||
1.4310 / X10CrNi188 Federstahl V2A | Große Korrosionsbeständigkeit | 160°C | 10270-3 | 70000 | 185000 | 250 | |
1.4301/ X5CrNi1810 Federstahl V2A | Korrosionsbeständigkeit | 250°C | 10088-3 | 68000 | 180000 | 380 | |
1.4401/ X5CrNiMo171-12-2 Federstahl V4A | Korrosionsbeständig, gute Relaxation, unmagnetisch | 300°C | 10270-3 | 68000 | 180000 | 400 | |
1.4436/ X5CrNiMo17133 Federstahl V4A | Gute Korrosionsbeständigkeit, leicht magnetisch | 300°C | 10088-3 | 68000 | 180000 | 400 | |
1.4539/ X1NiCrMoCuN25-20-5 Federstahl V4A | Schwere Korrosionsverhältnisse, unmagnetisch | 300°C | 10088 | 68000 | 180000 | 480 | |
1.4571/ X6CrNiMoTi17-12-2 Federstahl V4A | Korrosionsbeständig, höhere Festigkeit | 300°C | 10270-3 | 68000 | 185000 | 400 | |
CW452K / CuSn6 Federbronze | Unmagnetisch, lötbar, schweißbar, korrosionsbeständig | 60°C | 12166 | 42000 | 115000 | 410 | |
CW101C / CuBe2 Kupferberyllium | Korrosionsbeständig, antimagnetisch, funkenfrei | 80°C | 12166 | 47000 | 120000 | 1800 | |
2.4610 / NiMo16Cr16Ti Hastelloy C4 | Bei sehr korrosiver Atmosphäre, unmagnetisch | 450°C | - | 76000 | 210000 | 4100 | |
2.4632/ NiCr20CO18Ti Nimonic 90 | Korrosionsbeständig gegen die meisten Gase | 500°C | - | 83000 | 213000 | 6000 | |
TiAl6V4 Titanlegierung | Kälteunempfindlichkeit, Warmfestigkeit und Korrosionsbeständig | 300°C | - | 39000 | 104000 | 12700 | |
Dauerfeste Federstähle | |||||||
EN 10270-1 Typ DH | Federstahldraht Alle geläufigen Federn, hohe statische und mittlere dynamische Beanspruchung | 80°C | 10270-1 | 81500 | 206000 | 100 | |
EN 10270-1 Typ SH | Federstahldraht Alle geläufigen Federn, hohe statische und mittlere dynamische Beanspruchung | 80°C | 10270-1 | 81500 | 206000 | 100 | |
EN 10270-2 / VDC (unlegiert) Ventilfederdraht | Bei hoher Dauerschwingbeanspruchung | 80°C | 10270-2 | 79500 | 206000 | 150 | |
EN 10270-2 / VDSiCr (legiert) Ventilfederdraht | Hohe dynamische Beanspruchung über 100C, gute Relaxationseigenschaften | 120°C | 10270-2 | 79500 | 206000 | 310 | |
EN 10270-2 / VDCrV (legiert) Ventilfederdraht | Hohe dynamische Beanspruchung über 100°C, gute Ralaxationseigenschaften | 120°C | 10270-2 | 85500 | 200000 | 270 | |
1.4568 / X7CrNiAI17-7 Federstahl V4A | Geringe Relaxation, hohe Dauerfestigkeit | 350°C | 10270-3 | 73000 | 195000 | 600 | |
Hitzebeständige Federstähle | |||||||
1.4568 / X7CrNiAI17-7 Federstahl V4A | Geringe Relaxation, hohe Dauerfestigkeit | 350°C | 10270-3 | 73000 | 195000 | 600 | |
2.4610 / NiMo16Cr16Ti Hastelloy C4 | Bei sehr korrosiver Atmosphäre, unmagnetisch | 450°C | - | 76000 | 210000 | 4100 | |
2.4669 / NiCr15Fe7TiAI Inconel X750 | Hochtemperatur, unmagnetisch | 600°C | - | 76000 | 213000 | 3000 | |
2.4632 / NiCr20CO18Ti Nimonic 90 | Korrosionsbeständig gegen die meisten Gase | 500°C | - | 83000 | 213000 | 6000 | |
Duratherm / CoNiCrFe Duratherm | Hochtemperatur | 600°C | - | 85000 | 220000 | 5500 | |
TiAl6V4 Titanlegierung | Kälteunempfindlichkeit, Warmfestigkeit und Korrosionsbeständig | 300°C | - | 39000 | 104000 | 12700 | |
Niedrigtemperatur Federstähle | |||||||
1.4310 / X12CrNi177 Federstahl V2A | Große Korrosionsbeständigkeit | -200°C bis 160°C | 10270-3 | 70000 | 185000 | 250 | |
1.4568 / X7CrNiAI17-7 Federstahl V4A | Geringe Relaxation, hohe Dauerfestigkeit | -200°C bis 350°C | 10270-3 | 73000 | 195000 | 600 | |
1.4401 / X5CrNiMo171-12-2 Federstahl V4A | Korrosionsbeständig, gute Relaxation, unmagnetisch | -200°C bis 300°C | 10270-3 | 68000 | 180000 | 400 | |
CW452K / CuSn6 Federbronze | Unmagnetisch, lötbar, schweißbar, korrosionsbeständig | -200°C bis 60°C | 12166 | 42000 | 115000 | 410 | |
CW507L / CuZn36 Messingdraht | Unmagnetisch | -200°C bis 60°C | 12166 | 39000 | 110000 | 410 | |
CW101C / CuBe2 Kupferberyllium | Korrosionsbeständig, antimagnetisch, funkenfrei | -200°C bis 80°C | 12166 | 47000 | 120000 | 1800 | |
TiAl6V4 Titanlegierung | Kälteunempfindlichkeit, Warmfestigkeit und Korrosionsbeständig | -200°C bis 300°C | - | 39000 | 104000 | 12700 | |
Unmagnetische Federstähle | |||||||
CW507L / CuZn36 Messingdraht | Unmagnetisch | 60°C | 12166 | 39000 | 110000 | 410 | |
CW452K / CuSn6 Federbronze | Unmagnetisch, lötbar, schweißbar, korrosionsbeständig | 60°C | 12166 | 42000 | 115000 | 410 | |
CW101C / CuBe2 Kupferberyllium | Korrosionsbeständig, antimagnetisch, funkenfrei | 80°C | 12166 | 47000 | 120000 | 1800 | |
2.4610 / NiMo16Cr16Ti Hastelloy C4 | Bei sehr korrosiver Atmosphäre, unmagnetisch | 450°C | - | 76000 | 210000 | 4100 | |
2.4669 / NiCr15Fe7TiAI Inconel X750 | Hochtemperatur, unmagnetisch | 600°C | - | 76000 | 213000 | 3000 | |
Seewasserfeste Federstähle | |||||||
2.4610 / NiMo16Cr16Ti Hastelloy C4 | Bei sehr korrosiver Atmosphäre, unmagnetisch | 450°C | - | 76000 | 210000 | 4100 | |
TiAl6V4 Titanlegierung | Kälteunempfindlichkeit, Warmfestigkeit und Korrosionsbeständig | 300°C | - | 39000 | 104000 | 12700 | |
Speziell für Luftfahrtechnik | |||||||
TiAl6V4 Titanlegierung | Kälteunempfindlichkeit, Warmfestigkeit und Korrosionsbeständig | -200°C bis 300°C | - | 39000 | 104000 | 12700 | |
Federstahl elektrich leitend | |||||||
CW452K / CuSn6 Federbronze | Unmagnetisch, lötbar, schweißbar, korrosionsbeständig | -200°C bis 60°C | 12166 | 42000 | 115000 | 410 | |
CW507L / CuZn36 Messingdraht | Unmagnetisch | -200°C bis 60°C | 12166 | 39000 | 110000 | 410 | |
CW101C / CuBe2 Kupferberyllium | Korrosionsbeständig, antimagnetisch, funkenfrei | -200°C bis 80°C | 12166 | 47000 | 120000 | 1800 |